VACUUM MANUAL DE UTILIZAÇÃO

Unidades de Vácuo

VJ VG English

Español

Deutsch

Italiano

Česky

VM NOVO

SV NOVO

VB

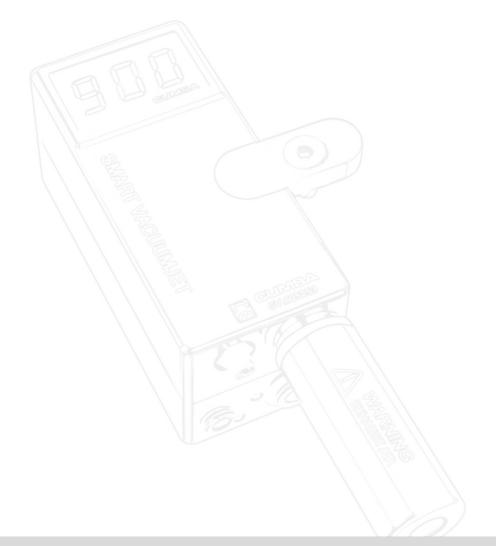
Conjunto Válvula Tubo - Pistão

PA

VV

VT

VD


NOVO

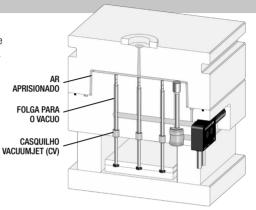
JV

CV

Componentes de Vedação

INNOVATIVE SOLUTIONS FOR YOUR MOLDS

ÍNDICE

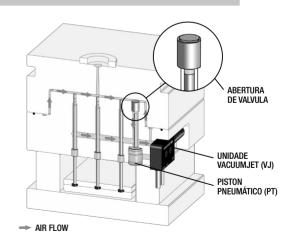

A.	VACUUMJET: INSTRUÇÕES DE UTILIZAÇÃO	4
В.	INSTALAÇÃO	6
	I. Unidades de vácuo: VJ, VG, VM, SV, VB	6
	II. Conjunto válvula - tubo - pistão: PT, PA, VV, VT, VD,LV	8
	III. Componentes de vedação: JV, CV, TV	10
C.	FUNCIONAMENTO	13
D.	MANUTENÇÃO	47
E.	ESPECIFICAÇÕES TÉCNICAS	48

田田

A. VACUUMJET: INSTRUÇÕES DE UTILIZAÇÃO

1_ MOLDE FECHADO

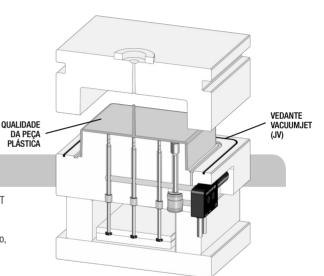
Quando o molde fecha, o ar fica preso no interior da cavidade. Ao iniciar o processo de injeção, o ar fica "encurralado", é aquecido e comprimido pela matéria plastica, originando peças de má qualidade. Temos de criar Vácuo.



2 CREAR EL VACÍO EN LA CAVIDAD

Para otimizar o processo de injeção, temos de extrair o ar que se encontra no interior da cavidade.

Existem diversos métodos para levar a cabo esta operação, no entanto, na maioria dos casos é a matéria plastica que expulsa o ar.

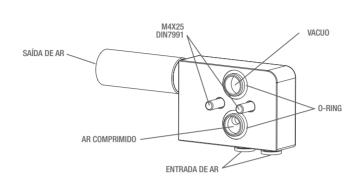

Com o sistema Vacuumjet, quando ativado antes da injeção, é possivel extrair o ar utilizando uma valvula de ar criando desta forma vacuo e assim permitir que a cavidade esteja em condições otimas para receber a matéria plástica.

三國

3_ INÍCIO DO PROCESSO DE INJEÇÃO

Durante a injeção, o sistema VACUUMJET, continua a aspirar o ar utilizando a folga dos extratores, ou outros escapes criados para o efeito, e desta forma garantir a fluidez máxima da matéria plastica ao mesmo tempo que reduz as pressões dentro da cavidade.

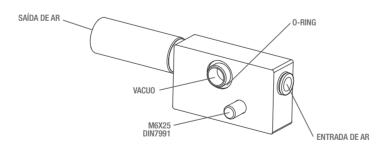
4_ PROCESSO DE EXTRAÇÃO


Concluída a injeção e o ciclo de refrigeração, o sistema VACUUMJET para e a peça é extraída.

Com o VACUUMJET, obtemos uma peça de plastico com maior qualidade, com ganhos a nível de tempo de injeção / tempo de ciclo, com parâmetros de injeção optimizados.

B. INSTALAÇÃO

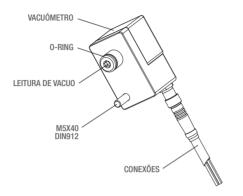
I. UNIDADES DE VÁCUO



VJ VG VM SV VB

Importante!

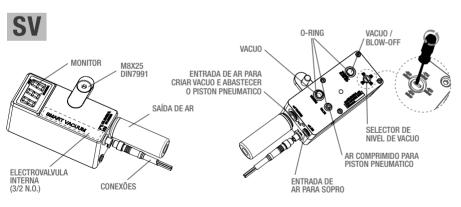
Os canais devem estar limpos para evitar que entrem partículas no Sistema Venturi. Os vedantes devem ser colocados na devida posição, de maneira a garantir uma boa vedação.



Importante!

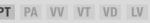
Os canais devem estar limpos para evitar que entrem partículas no Sistema Venturi. Os vedantes devem ser colocados na devida posição, de maneira a garantir uma boa vedação.

I. UNIDADES DE VÁCUO VJ VG VM SV VB



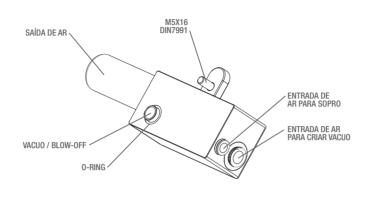
Importante!

Os vedantes devem ser colocados na devida posição, de maneira a garantir uma boa vedação.


Importante!

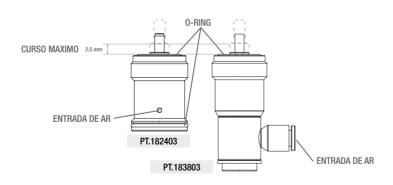
Os canais devem estar limpos para evitar que entrem partículas no Sistema Venturi. Os vedantes devem ser colocados na devida posição, de maneira a garantir uma boa vedação.

国


I. UNIDADES DE VÁCUO

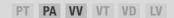
II. CONJUNTO VÁLVULA - TUBO - PISTÃO

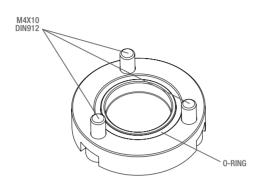
VJ VG VM SV VB



Importante!

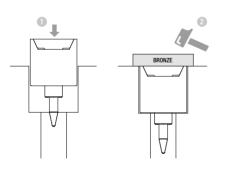
Os canais devem estar limpos para evitar que entrem partículas no Sistema Venturi. Os vedantes devem ser colocados na devida posição, de maneira a garantir uma boa vedação.




Importante!

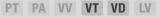
Os vedantes devem ser colocados na devida posição, de maneira a garantir uma boa vedação. O pistão pneumático é sempre acionado com um curso de 2,5mm. A Válvula é acionada pelo Pistão Pneumático.

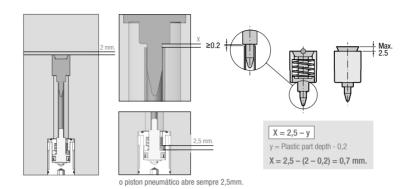
II. CONJUNTO VÁLVULA - TUBO - PISTÃO



Importante!

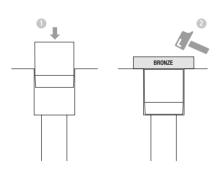
Os vedantes devem ser colocados na devida posição, de maneira a garantir uma boa vedação.




Importante!

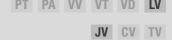
A Válvula é acionada pelo Pistão Pneumático. A Válvula VACUUMJET tem a pressão adequada. Para limitar a abertura da Válvula VACUUMJET, deve cortar o Tubo Válvula VACUUMJET.

II. CONJUNTO VÁLVULA - TUBO - PISTÃO

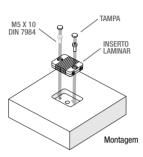


Importante!

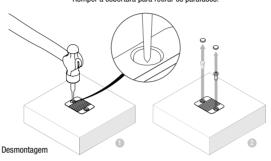
Para limitar a abertura da Válvula VACUUMJET, deve cortar o Tubo Válvula VACUUMJET. Recomendamos cortar o Tubo Válvula VACUUMJET com precisão, através de erosão por fio ou de torneamento.

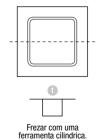


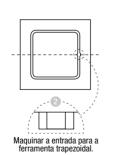
Importante!

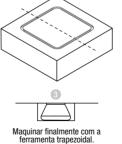

O VD é colocado á pressão. A ventilação permite a circulação do ar em ambas as direções.

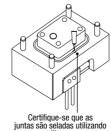
II. CONJUNTO VÁLVULA - TUBO - PISTÃO


III. COMPONENTES DE VEDAÇÃO


Romper a cobertura para retirar os parafusos.

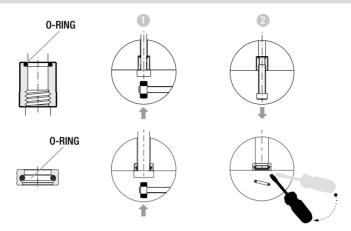


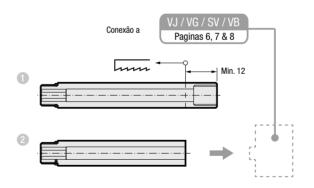



Importante!

O LV é aplicado na zona moldante utilizando 2 parafusos. Estes podem ser cobertos com uns tampões retificados fornecido no conjunto.

silicone.


III. COMPONENTES DE VEDAÇÃO



Importante!

Os vedantes devem ser colocados na devida posição, de maneira a garantir uma boa vedação. O Casquilho VACUUMJET tem a pressão adequada.

TV

Importante!

Os vedantes devem ser colocados na devida posição, de maneira a garantir uma boa vedação.

C. FUNCIONAMENTO

TESTE DE FUNCIONAMENTO DO SISTEMA VACUUMJET

Em primeiro lugar deve saber que está preste s a trabalhar com um conceito DIFERENTE.

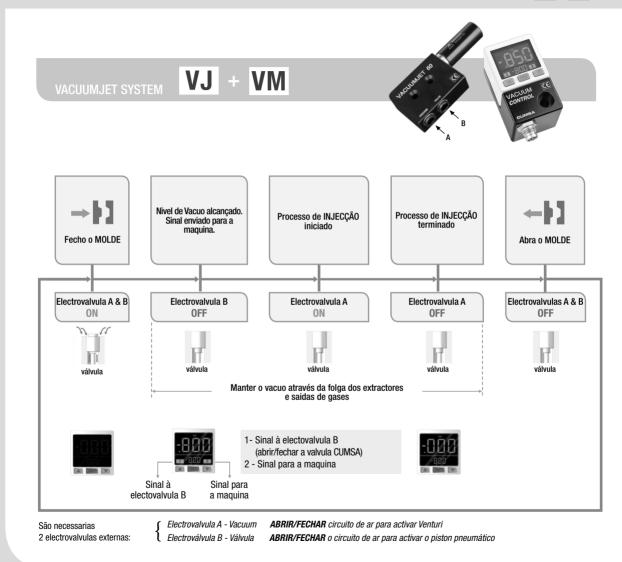
O processo e trabalho é totalmente diferente do modo convencional.

Geralmente a válvula é istalada na cavidade. Uma vez que o molde está fechado e a valvula aberta, o ar é retirado.

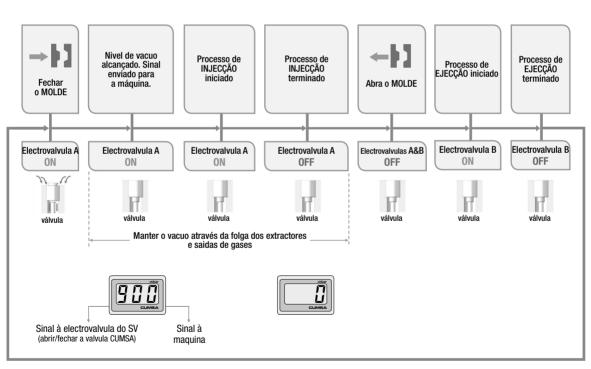
O sinal de injecção só será dado depois da valvula fechada, de outra forma a valvula ficara inundada com plastico.

Como pode verificar que foi criado vacuo na cavidade?

Utilizando um sensor de Vacuo.

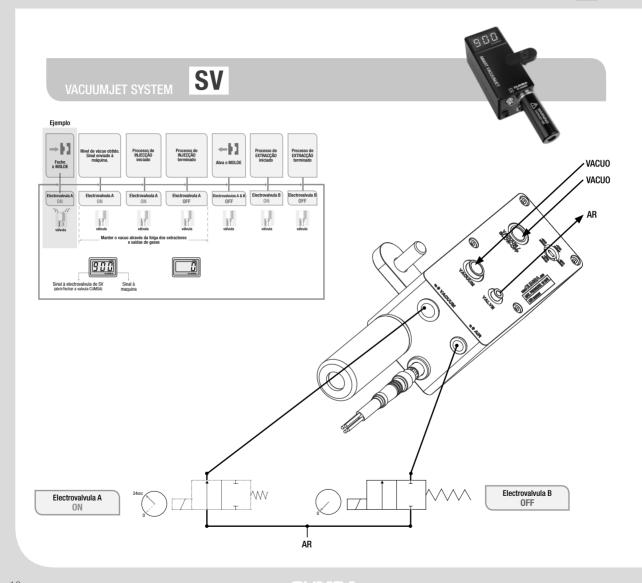

Este sensor será responsável por enviar o sinal para INJECCÃO OK.

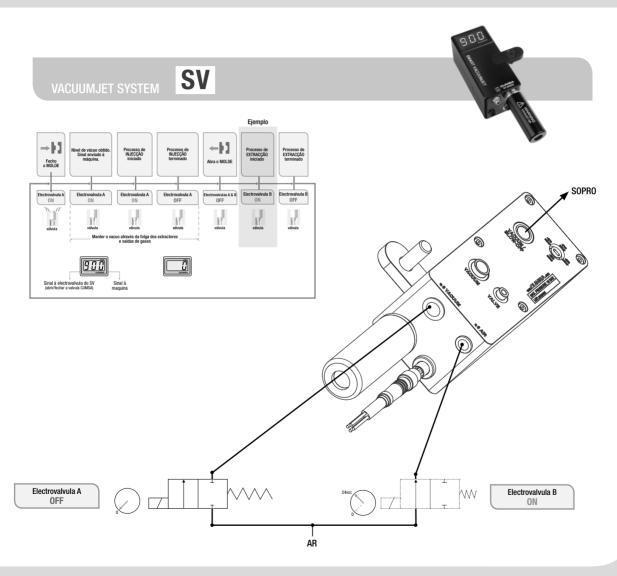
ESCOLHA A SUA OPÇÃO

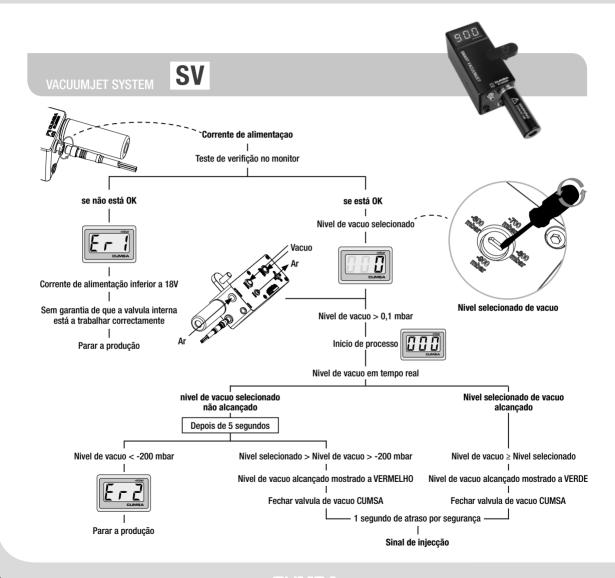


O vacuumjet + (moldelo VG) pode ser adicionado a qualquer combinação para aumentar o poder de aspiração e acelerar o processo de vacuo. Para cada modelo VG, é necessário um circuito individual de ar comprimido para garatir que temos sempre 6 BARS de pressão de ar.

O uso de Extractores espirais ou tubolares espirais (VP & VS) é prioritário quando não se usa a valvula. No entanto tambem é recomendado quando se usa a valvula de forma a manter o vacuo alcançado durante o restante processo.



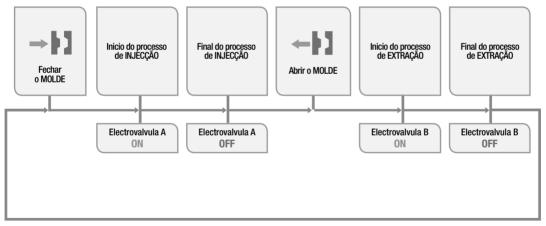

VACUUMJET SYSTEM SV



São necessárias 2 electrovalvulas externas: Electrovalvula A - Vacuum
Electrovalvula B - Valvula

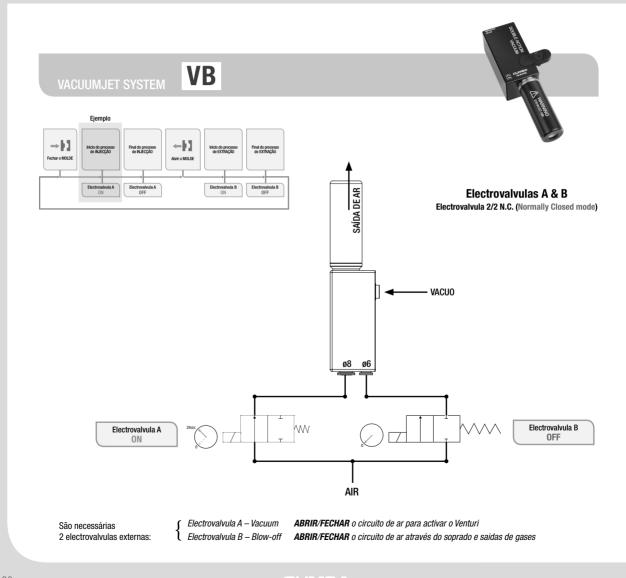
ABRIR/FECHAR o circuito de ar para activar o ventury a activar os pistons pneumaticos
ABRIR/FECHAR o circuito de ar para activar a funcão de soprado

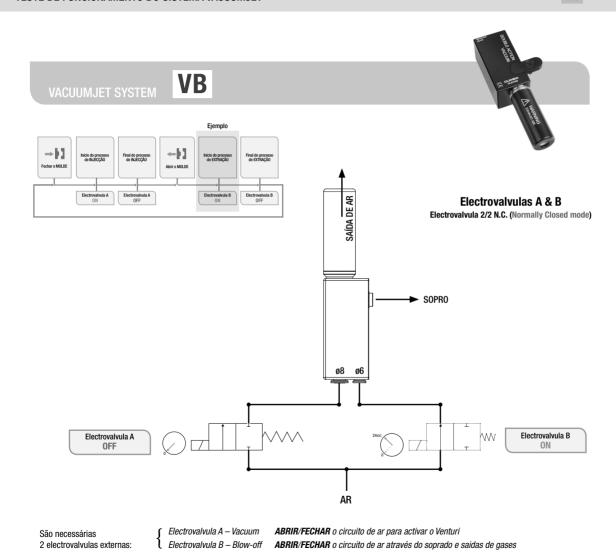
Español

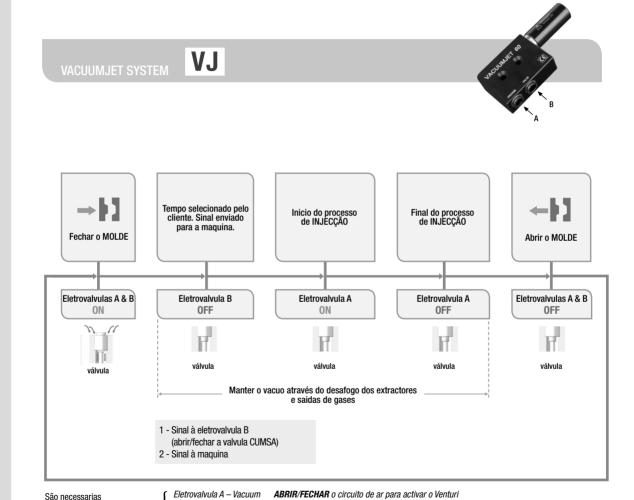

Deutsch

Italiano

Portugues

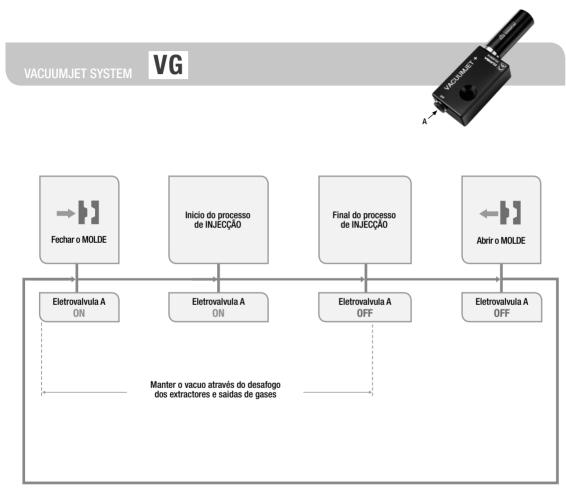

Česky

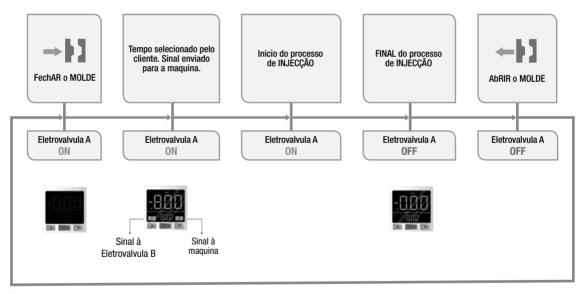




são necessárias 2 electrovalvulas externas: Electrovalvula A – Vacuum
Electrovalvula B – Blow-off

ABRIR/FECHAR o circuito de ar para activar o Venturi (Vacuum ON / Vacuum OFF)
ABRIR/FECHAR o circuito de ar através do soprado e saidas de gases




2 electrovalvulas externas:

Eletrovalvula B – Blow-off ABRIR/FECHAR o circuito de ar através do soprado e saidas de gases

É necessaria uma electrovalcula externa: Electrovalvula A – Vacuum - ABRIR/FECHAR o circuito de ar para activar o Venturi (Vacuum ON / Vacuum OFF)

É necessaria uma electrovalcula externa: Electrovalvula A – Vacuum - ABRIR/FECHAR o circuito de ar para activar o Venturi (Vacuum ON / Vacuum OFF)

Model: VM.503032

Model: VM.503032

Switch output:

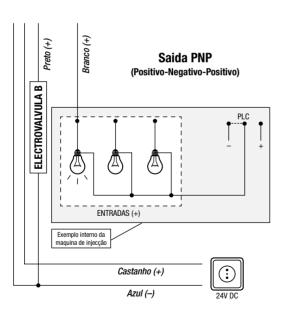
Output PNP open collector Max. load: 500mA

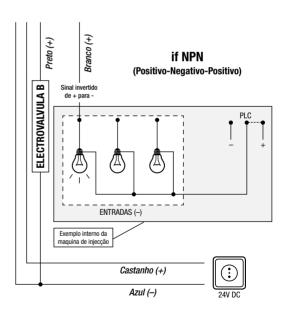
Max. supply voltage: 24VDC ±10%

Cabos para fornecer energia 24V para conectar ao VM VM.503032:

Azul (-): Sinal de corrente negativo.

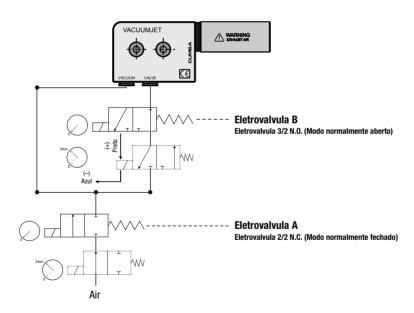
Castanho (+): Sinal de corrente positivo.


Cabos para sinal de inicio de injecção:

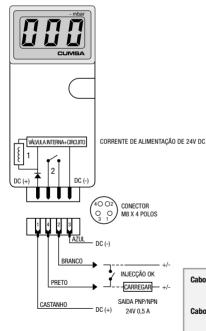

Branco (+): Saida PNP para abrir o conector.

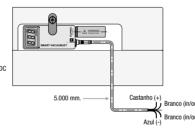
Cabos para sinalizar a eletrovalvula exterior B:

Preto (+): para conectar o born negativo da electrovalvula B ("SOL.B") 24VDC, 12W máx. Depois conectar o born negativo da electrovalvula B ao cabo azul (-).



ATENÇÃO, o VM não incorpora electrovalvula.



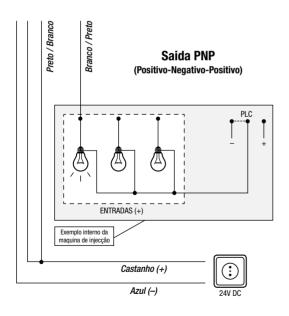

são necessarias 2 electrovalvulas exteriores: Electrovalvula B – Valve

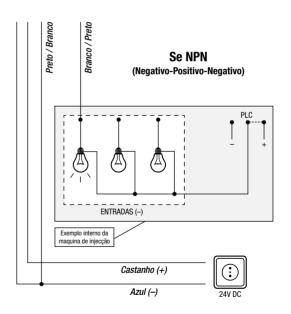
Electrovalvula A – Vacuum ABRIR/FECHAR circuito de ar para activar Venturi (Vacuum ON/Vacuum OFF) ABRIR/FECHAR o circuito de ar para activar o piston pneumático (Valve open/Valve closed)

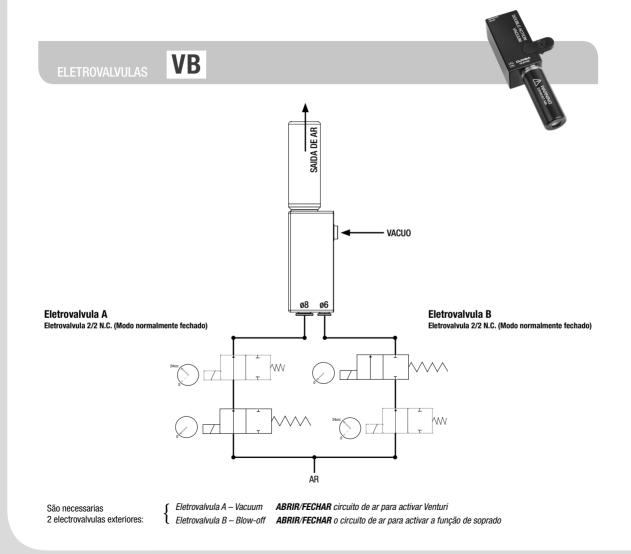
Branco (in/out) 12-24V VDC 0.5A (500mA) Branco (in/out) 12-24V VDC 0.5A (500mA)

Cabos para fornecer energia 24V para conectar a SV.605253: **Azul (-): Sinal negativo de potência.

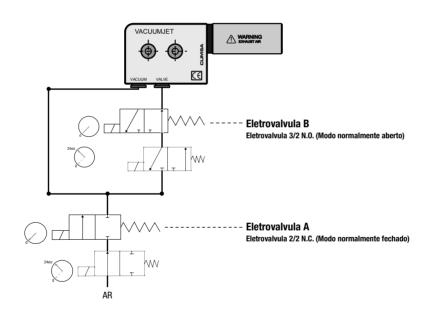
Castanho (+): Sinal positivo de potência.


Cabos de sinal para iniciar a injecção: Branco (+/-)

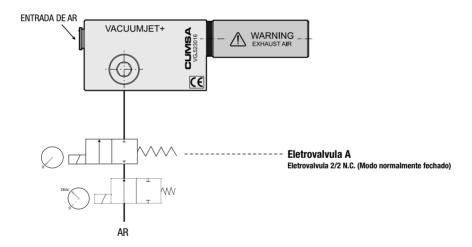

Preto (+/-)


Estes cabos são pontos de informação, ambos PNP (positivo-negativo-positivo) ou NPN (negativo-positivo) darão o OK à maquina, para injecção. Estes cabos deverão estar ligados ao PLC da maquina de injecção, isto comandará a injecção. Cada maquina de injecção tem pontos diferentes de ligação..

MULAÇÃO DAS LIGAÇÕES ELÉTRICAS



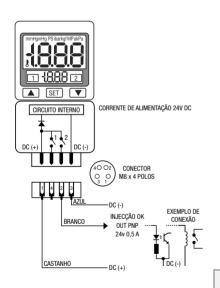
ELETROVALVULAS **VJ**

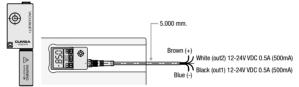


São necessarias 2 electrovalvulas exteriores: Eletrovalvula A – Vacuum ABRIR/FECHAR circuito de ar para activar Venturi

l Eletrovalvula B – Blow-off ABRIR/FECHAR o circuito de ar para activar o piston automatico (valvula aberta/valvula fechada)

Italiano




É necessaria 1 electrovalvula exterior: Electrovalvula A - ABRIR/FECHAR o circuito de ar para activar o venturi (Vacuum ON / Vacuum OFF)

VG + VM

Model: VM.503032

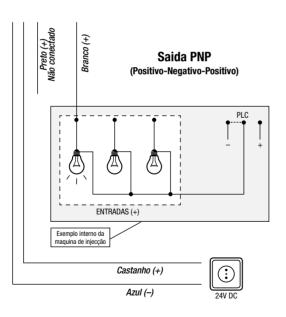
Model: VM.503032

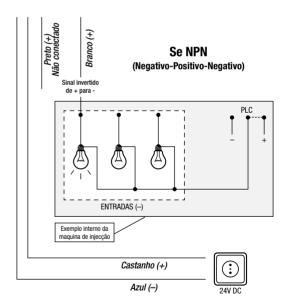
Switch output:

Output PNP open collector Max. load: 500mA Max. supply voltage: 24VDC ±10%

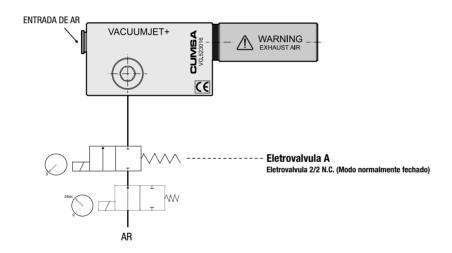
Cabos para alimentar a corrente de 24V para conectar o VM.503032:

**Azul (-): Sinal de corrente negativo.

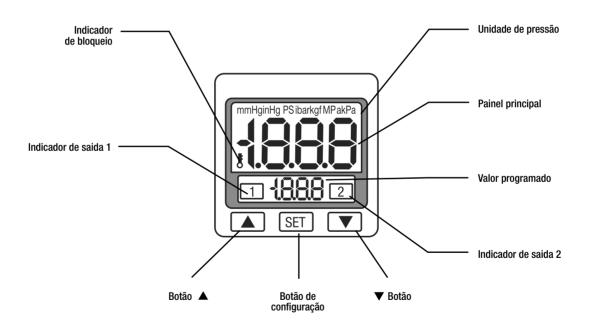

**Castanho (+): Sinal de corrente positivo.


Cabos de sinal, para iniciar a injecção:

Branco (+): saida PNP para abrir o colector. Se o PLC da maquina de injeção é NPN, o sinal tem de ser invertido de (+) para (-)


Cabos de sinal, para controlar a electrovalvula B externa: *Preto (+)*: Não conectado.

É necessária 1 electrovalvula externa: Electrovalvula A - ABRIR/FECHAR o circuito de ar para activar o venturi (Vacuum ON / Vacuum OFF)

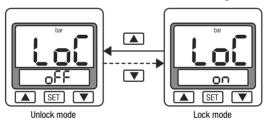

C. EM FUNCIONAMENTO

INDICADOR DO VACUÓMETRO

PROGRAMAÇÃO DO SENSOR

INDICADOR DO VACUÓMETRO

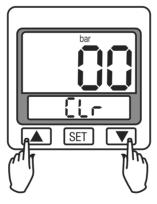
As partes principais do controlador são:


A. BLOQUEAR - DESBLOQUEAR

A. BLOQUEAR - DESBLOQUEAR

A unidade é sempre fornecida bloqueada para prevenir qualquer modificação acidental. Em caso de necessidade de modificar o valor zero, terá de desbloquear a unidade. Recomendamos bloquear novamente, já que o Vacuumjet só funcionará com as definições de fabrica programação de fabrica - MODO DE PROGRAMAÇÃO INICIAL

Pressione ambos os botões simultaneamente mais de 2 segundos.

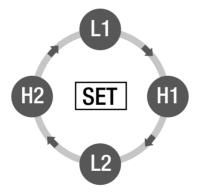

Pressione botão SET para activar/desactivar oo bloqueio. Quando o modo bloqueio está activo o painel mostrará.

B. CONFIGURAR PONTO ZERO

B. CONFIGURAR PONTO ZERO

Quando acionado o sistema de corrente, se o painel não mostra 000, o sistema tem de ser reconfigurado para o valor apropriado para fazê-lo, pressione os botões seta ao mesmo tempo até "000" aparecer. Liberte os botões para terminar a configuração zero

C. CONFIGURAR DOS NIVEIS DE VACUO


C. CONFIGURAR DOS NIVEIS DE VACU

Vacuo pré definido a 80% (por recomendação de fabricante). No caso do cliente querer mofificar este valor.

Primeiro accione ao modo de bloquear/desbloquear para proceder à modificação.

Pressione SET o botão de configuração, e para alternar entre L-1, H-1, L2 e H-2.

Pressione ▲ e ▼ para aumentar e diminuir valores e pressione SET novamente para definir valores.

IMPORTANTE

Recomendamos que siga a configuração de fabrica.

IMPORTANTE

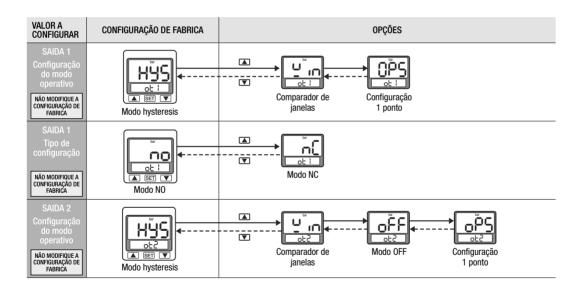
L1=L2=0 H1=H2=-0.800 L1= Baixa intensidade para o sinal 1

H1= Alta intensidade para o sinal 1

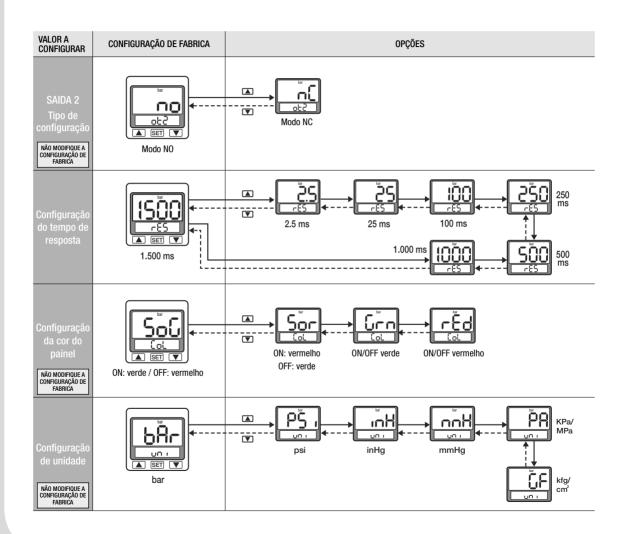
L2= Baixa intensidade para o sinal 2

H2= Alta intensidade para o sinal 2

^{*}As opcões e valores de L-1, H-1, L-2, H-2, são mostrados no painel secundario.


C. CONFIGURAÇÃO DOS NIVEIS DE VACUO

VALOR PARA CONFIGURAR	CONFIGURAÇÃO DE FABRICA	OPÇÕES
L4	Valor:	
H-1	Valor:800	DDD (m-)80 (zz)
L-2	DÖÜ TÜÜÜZ VAlor: .000 VAlor: .000	
H-2	DÖD 10 H-2 12 A SET V Valor:800 800	


D. MODO DE CONFIGURAÇÃO INICIAL

Manter premido o botão set entre 3 e 5 segundos.

Pressionar ▲ e ▼ para alterar entre as diferentes opções a pressionar 🗊 novamente para a opção selecionada.

D. MODO DE CONFIGURAÇÃO INICIAL

E. CÓDIGO INSTRUÇÕES DE ERRO

TIP0	CÓDIGO	CONDIÇÃO	SOLUÇÃO DE PROBLEMAS	
ERRO DE PRESSÃO RESIDUAL	ER3	Durante a reposição a zero, a pressão ambiente é superior a ± 3% F.S.	Altere a pressão de entrada para a pressão ambiente e execute a reinicialização zero novamente.	
ERRO DE PRESSÃO APLICADA	HHH	A pressão aplicada excede o limite máximo da configuração da pressão	Ajuste a pressão dentro da faixa de pressão operacional.	
ERRO DE PRESSÃO APLICADA	LLL	a pressão aplicada excede o limite minimo da configuração da pressão	Ajuste a pressão dentro da faixa de pressão operacional.	
	ER4	Erro interno do sistema		
ERRO DO SISTEMA	ER5	ETTO IIITETTIO UO SISTETTIA	Desligue a energia e, em seguida, reinicie.	
	ERS Erro interno de dados	Se a condição de erro persistir, por favor retorne à fábrica para inspeção.		
	ER7	Lito interno de dados		

C. FUNCIONAMENTO

INICIO DE TESTE

- a) Lista de tarefas.
- b) Ligar o ar e verificar qual o nível máximo atingido. Tenha em consideração que não deve autorizar a injeção nesta fase.
- c) Uma vez que o nivel de vacuo estabilize, tome nota o valor e defina o limite no controlador ligeiramente abaixo.

Estamos agora preparados para injectar peças plasticas.

O ponto mais importante é assegurar que o sensor controla o processo de injecção.

D. MANUTENÇÃO

LISTA DE TAREFAS

	Ferramenta na prensa
	Diagrama seguido correctamente
	Conexões correctar
	Valor zero configurado
	L1=L2=0
	H1=H2=-0.980*
	Sensor bloqueado
П	Em posição

MANUTENÇÃO

- · Assegure que o ar comprimido é SECO e filtrado.
- Assegure que a pressao do ar está entre 5 e 8 bar.
- Assegure que os canais de vacuo estao completamente limpos.
- Assegure que todas as juntas, casquilhos e o-rings permanecem herméticos.
- Assegure que os espirais dos extractores estão livres de residuos.
- Assegure que o escape está limpo.
- Assegure que não há residuos no Venturi.
- Assegure que a unidade permanece bloqueada durante a produção.

^{*} Para testar o nivel de vacuo recomendamos programar H1/H2 a -0,980. Isto garante que nunca chegará ao maximo, uma vez que o nivel de venturi é 0,940. Ao respeitar este procedimento podemos evitar enviar o sinal para a maquina de injecção

田図

E. ESPECIFICAÇÕES TÉCNICAS

VACUUMJET

TIP0		ESPECIFICAÇÕES	
Alcance de pressão nominal		0.0 ~ / -101.3kPa	
Pressão suportada		300kPa	
Fluído		Ar, gases não corrosivos, gases combustiveis	
	kPa	0.1	
	Мра	-	
	kgf/cm²	0.001	
Ajustar a resolução de pressao	bar	0.001	
	psi	0.01	
	InHg	0.1	
	mmHg	1	
Fonte de alimentação		12 to 24 VDC ±10%, Ripple (P-P) 10% or less	
Consumo actual		≤40mA (Sem carga)	
Interruptor de saida		Modelo: SV.605253	Modelo: VM.503032
		Saida PNP/NPN (DC/AC) Carga maxima: 500mA Carga maxima de alimentação: 24VDC ±10%	Saida PNP para abrir o colector Carga maxima: 500mA Carga maxima de alimentação: 24VDC ±10%

中國

VACUUM.IF

TIP0		ESPECIFICAÇÕES	
Repetição (Interruptor de saida)		≤±0.2% F.S. ±1 dígito	
Tempo de resposta		≤2.5ms (função de prova de vibrações 25ms até 1500 ms de seleções)	
Protecção contra curto circuito		Sim	
Monitor LCD de 7 segmentos		Três cores (vermelho/verde/laranja) (Sampling rate> 5 times/sec.)	
Indicador de precisão		≤±2% F.S. ±1 dígito (temperatura ambiente: 25 ±3°C)	
Indicador de ligação		Indicador laranja 1 & 2	
Ambiente	Marco	IP 40	
	Alcance de temperatura ambiente	Operação: 0~50°C, Armazenamento: -10~60°C (no condensation or freezing)	
	Alcance de humedad ambiente	Operação/Armazenamento: 35~85% RH (no condensation)	
	Tensao suportada	1000VAC in 1-min (entre a caixa e o cabo condutor)	
	Resistencia ao calor	50Mohm min. (at 500VDC, entre a caixa e o cabo condutor)	
	Vibração	Amplitude total 1.5mm ou 10G, 10Hz-150Hz-10Hz digite durante 1 minuto, 2 horas em cada direcção X,Y, e Z	
	Choque	100m/s (10G), 3 vezes em cada direcção X, Y, e Z	
Caracteristica de temperatura		≤±2% F.S. da pressão detectar (25°C) à temperatura. Alcance de 0~50°C	

CUMSA

ANOTAÇÕES